If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+64t+144
We move all terms to the left:
t-(-16t^2+64t+144)=0
We get rid of parentheses
16t^2-64t+t-144=0
We add all the numbers together, and all the variables
16t^2-63t-144=0
a = 16; b = -63; c = -144;
Δ = b2-4ac
Δ = -632-4·16·(-144)
Δ = 13185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13185}=\sqrt{9*1465}=\sqrt{9}*\sqrt{1465}=3\sqrt{1465}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-3\sqrt{1465}}{2*16}=\frac{63-3\sqrt{1465}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+3\sqrt{1465}}{2*16}=\frac{63+3\sqrt{1465}}{32} $
| 4x-0.9=x | | H=-16t^2+25t+90 | | 4x-3x+3/12=1 | | 3(3-8x)=81 | | -155=-10x-5 | | 25=16(1.2)^2+40t | | 0.8=1.8X10n | | 0.18=1.8×10n | | -3p+4-5=4p-8 | | 25=-16(1.4)^2+40t | | 8+7k=7k | | 7^x+4=49^2x-1 | | 25=-16(1.2)^2+40t | | 25=-16(1.25)^2+40t | | 25=-16(2.50)^2+40t | | √-7y+8=y | | 25=-16t^2+40(2.50) | | 7(y+2)=-35 | | -12x+4=-7-16 | | 22=-3(2x+3) | | h=16(1.5^2)+40(1.5) | | h=16(1.5^2)+40(3) | | h=-16(3^2)+40(1.5) | | h=-16(1.5^2)+40(3) | | h=-16(3^2)+40(3) | | h=-16(1.5^2)+40(1.5) | | h=-16(1^2)+40(1) | | x(5x-4)=7 | | (4x(2)-3x-2)-(2x(2)+2x+7)=0 | | 6+x=60+x×25/100 | | 4^6=8x | | (3a+7)-(2a+5)=0 |